Deep Complex Gated Recurrent Networks-Based IoT Network Intrusion Detection Systems

Author:

El-Shafeiy Engy1ORCID,Elsayed Walaa M.2ORCID,Elwahsh Haitham3ORCID,Alsabaan Maazen4ORCID,Ibrahem Mohamed I.5ORCID,Elhady Gamal Farouk6

Affiliation:

1. Department of Computer Science, Faculty of Computers & Artificial Intelligence, University of Sadat City, Sadat City 32897, Egypt

2. Department of Information Technology, Faculty of Computers & Information Systems, Damanhour University, Damanhour 22511, Egypt

3. Computer Science Department, Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

4. Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

5. School of Computer and Cyber Sciences, Augusta University, Augusta, GA 30912, USA

6. Computer Science Department, Faculty of Computers and Information, Menoufia University, Shebin Elkom 32511, Egypt

Abstract

The explosive growth of the Internet of Things (IoT) has highlighted the urgent need for strong network security measures. The distinctive difficulties presented by Internet of Things (IoT) environments, such as the wide variety of devices, the intricacy of network traffic, and the requirement for real-time detection capabilities, are difficult for conventional intrusion detection systems (IDS) to adjust to. To address these issues, we propose DCGR_IoT, an innovative intrusion detection system (IDS) based on deep neural learning that is intended to protect bidirectional communication networks in the IoT environment. DCGR_IoT employs advanced techniques to enhance anomaly detection capabilities. Convolutional neural networks (CNN) are used for spatial feature extraction and superfluous data are filtered to improve computing efficiency. Furthermore, complex gated recurrent networks (CGRNs) are used for the temporal feature extraction module, which is utilized by DCGR_IoT. Furthermore, DCGR_IoT harnesses complex gated recurrent networks (CGRNs) to construct multidimensional feature subsets, enabling a more detailed spatial representation of network traffic and facilitating the extraction of critical features that are essential for intrusion detection. The effectiveness of the DCGR_IoT was proven through extensive evaluations of the UNSW-NB15, KDDCup99, and IoT-23 datasets, which resulted in a high detection accuracy of 99.2%. These results demonstrate the DCG potential of DCGR-IoT as an effective solution for defending IoT networks against sophisticated cyber-attacks.

Funder

Researchers Supporting Project

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3