AirBERT: A fine-tuned language representation model for airlines tweet sentiment analysis

Author:

Yenkikar Anuradha,Babu C. Narendra

Abstract

Airlines operate in a competitive marketplace and must upgrade their services to meet customer safety and comfort. Post-pandemic, the government and airlines resumed flights with many restrictions, the impact which is unexplored. An increasing number of customers use social media to leave reviews and in this age of Machine Learning (ML), if a model is available to automatically polarize flyer sentiments, it can help airlines upscale. In this work, a custom dataset is scraped from Twitter by including online reviews of five Indian airlines. Multiclass sentiment analysis using three classifiers, support vector machine, K-nearest neighbor and random forest with word2vec and TF-IDF word embeddings is implemented. AirBERT, a fine-tuned deep learning attention model based on bidirectional encoder representation from transformers is proposed. From results, it is observed that on ML, Random Forest with TF-IDF performs the best but the graphical processing unit and domain corpora trained AirBERT outperforms all the other models with an accuracy of 91%. Indigo airlines and Jet Airways received the maximum percentage of positive and negative reviews respectively. In performance comparison with three existing models on the USA airlines tweets dataset, the proposed model outperforms others trained on general domain corpora and matches state-of-the-art TweetBERTv2 model accuracy. The model can be deployed by airlines and other service industries to implement a customer relationship management (CRM) system.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traditional Machine Learning, Deep Learning, and BERT (Large Language Model) Approaches for Predicting Hospitalizations From Nurse Triage Notes: Comparative Evaluation of Resource Management;JMIR AI;2024-08-27

2. Exploring Tech-Enabled Solutions;Advances in Hospitality, Tourism, and the Services Industry;2024-06-30

3. Beyond traditional supply chain management: Addressing sociopolitical challenges in increasingly turbulent global trade landscape;Business Strategy & Development;2024-06

4. Movie Recommendation System Using Cosine Similarity;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

5. Face Recognition Application in Flutter;2023 2nd International Conference on Futuristic Technologies (INCOFT);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3