Customer Analysis Using Machine Learning Algorithms: A Case Study Using Banking Consumer Dataset

Author:

Siva Subramanian R.1,Prabha D.2,Maheswari B.3,Aswini J.4

Affiliation:

1. Anna University, Chennai-600025, India

2. Sri Krishna College of Engineering and Technology, Coimbatore, India

3. Rajalakshmi Institute of Technology, Chennai, India

4. Sree Vidyanikethan Engineering College, Tirupati, India

Abstract

The aim of each enterprise is to achieve high revenue from the business and to stay in a high position from their competitors. To archive high revenue and high position from competitors the need of understanding the business consumers is a crucial one. However the firm business is completely dependent on the consumers the efficient analysis of consumers within the enterprises makes to achieve the business to high position. To perform effective consumer analysis, in this study different machine learning is studied and experimented. ML classifiers make to understand in-depth analysis about the consumer data and further enables to plan wise decision strategies to enhance the business revenue and consumer satisfaction intelligently. The use of different ML classifiers is to sort out how the customer prediction outcome changes accordingly to the ML classifier is applied. This makes to find the best ML classifier for the consumer dataset applied in this study. The experimental procedure is performed using different ML classifiers and the outcome achieved is captured and projected using various validity scores. This work applies different ML classifiers like K-NN, C4.5, Random Forest, Random Tree, LR, MLP and NB for customer analysis. The empirical results illustrate the C4.5 model achieves better accuracy prediction compare to other ML classifiers and also compared with the time complexity NB model works efficiently with running time.

Publisher

IOS Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Data Processing, Machine Learning, and Data Security;Advances in Electronic Commerce;2024-09-27

2. Predicting Potential Customers in Direct Marketing Using Uplift Modelling and Advanced Machine Learning;2023 International Conference on Computer and Applications (ICCA);2023-11-28

3. Revolutionizing Digital Marketing Using Machine Learning;Advances in Marketing, Customer Relationship Management, and E-Services;2023-06-30

4. Purchases Insights using Alteryx as Self-Service Analytics;2023 8th International Conference on Communication and Electronics Systems (ICCES);2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3