Classification of Invasive Ductal Carcinoma from histopathology breast cancer images using Stacked Generalized Ensemble

Author:

Kumar Deepika1,Batra Usha1

Affiliation:

1. School of Engineering, GD Goenka University, Gurugram, Haryana, India

Abstract

Breast cancer positions as the most well-known threat and the main source of malignant growth-related morbidity and mortality throughout the world. It is apical of all new cancer incidences analyzed among females. However, machine learning algorithms have given rise to progress across different domains. There are various diagnostic methods available for cancer detection. However, cancer detection through histopathological images is considered to be more accurate. In this research, we have proposed the Stacked Generalized Ensemble (SGE) approach for breast cancer classification into Invasive Ductal Carcinoma+ and Invasive Ductal Carcinoma-. SGE is inspired by the stacking model which utilizes output predictions. Here, SGE uses six deep learning models as level-0 learner models or sub-models and Logistic regression is used as Level – 1 learner or meta – learner model. Invasive Ductal Carcinoma dataset for histopathology images is used for experimentation. The results of the proposed methodology have been compared and analyzed with existing machine learning and deep learning methods. The results demonstrate that the proposed methodology performed exponentially good in image classification in terms of accuracy, precision, recall, and F1 measure.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference47 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Various Skin Cancer Classification & Detection using Deep learning;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

2. Machine Learning System for the Effective Diagnosis and Survival Prediction of Breast Cancer Patients;International Journal of Online and Biomedical Engineering (iJOE);2024-02-14

3. Prediction of IDC Breast Cancer by the Application of Transfer Learning with an Ensemble Method;2023 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD);2023-09-21

4. Automated carcinoma classification using efficient nuclei-based patch selection and deep learning techniques;Journal of Intelligent & Fuzzy Systems;2023-07-02

5. A Histopathological Image Classification Method Based on Model Fusion in the Weight Space;Applied Sciences;2023-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3