A Histopathological Image Classification Method Based on Model Fusion in the Weight Space

Author:

Zhang Gang1ORCID,Lai Zhi-Fei2,Chen Yi-Qun3,Liu Hong-Tao1,Sun Wei-Jun1

Affiliation:

1. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

2. Information Engineering College, Guangzhou Panyu Polytechnic, Guangzhou 511483, China

3. School of Computer Science, Guangdong University of Education, Guangzhou 510303, China

Abstract

Automatic classification of histopathological images plays an important role in computer-aided diagnosis systems. The automatic classification model of histopathological images based on deep neural networks has received widespread attention. However, the performance of deep models is affected by many factors, such as training hyperparameters, model structure, dataset quality, and training cost. In order to reduce the impact of the above factors on model training and reduce the training and inference costs of the model, we propose a novel method based on model fusion in the weight space, which is inspired by stochastic weight averaging and model soup. We use the cyclical learning rate (CLR) strategy to fine-tune the ingredient models and propose a ranking strategy based on accuracy and diversity for candidate model selection. Compared to the single model, the weight fusion of ingredient models can obtain a model whose performance is closer to the expected value of the error basin, which may improve the generalization ability of the model. Compared to the ensemble model with n base models, the testing cost of the proposed model is theoretically 1/n of that of the ensemble model. Experimental results on two histopathological image datasets show the effectiveness of the proposed model in comparison to baseline ones, including ResNet, VGG, DenseNet, and their ensemble versions.

Funder

National Natural Science Foundation of China

Guangzhou City and the School

Science and Technology Projects in Guangzhou

Key Platforms and Scientific Research Projects in Universities in Guangdong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3