Affiliation:
1. Faculty of Computers and Information, South Valley University, Qena, Egypt
Abstract
Data preprocessing is a necessary core in data mining. Preprocessing involves handling missing values, outlier and noise removal, data normalization, etc. The problem with existing methods which handle missing values is that they deal with the whole data ignoring the characteristics of the data (e.g., similarities and differences between cases). This paper focuses on handling the missing values using machine learning methods taking into account the characteristics of the data. The proposed preprocessing method clusters the data, then imputes the missing values in each cluster depending on the data belong to this cluster rather than the whole data. The author performed a comparative study of the proposed method and ten popular imputation methods namely mean, median, mode, KNN, IterativeImputer, IterativeSVD, Softimpute, Mice, Forimp, and Missforest. The experiments were done on four datasets with different number of clusters, sizes, and shapes. The empirical study showed better effectiveness from the point of view of imputation time, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2 score) (i.e., the similarity of the original removed value to the imputed one).
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献