Classifiers Accuracy Improvement Based on Missing Data Imputation

Author:

Jordanov Ivan1,Petrov Nedyalko1,Petrozziello Alessio1

Affiliation:

1. School of Computing , University of Portsmouth , Portsmouth , PO1 3FE , UK

Abstract

Abstract In this paper we investigate further and extend our previous work on radar signal identification and classification based on a data set which comprises continuous, discrete and categorical data that represent radar pulse train characteristics such as signal frequencies, pulse repetition, type of modulation, intervals, scan period, scanning type, etc. As the most of the real world datasets, it also contains high percentage of missing values and to deal with this problem we investigate three imputation techniques: Multiple Imputation (MI); K-Nearest Neighbour Imputation (KNNI); and Bagged Tree Imputation (BTI). We apply these methods to data samples with up to 60% missingness, this way doubling the number of instances with complete values in the resulting dataset. The imputation models performance is assessed with Wilcoxon’s test for statistical significance and Cohen’s effect size metrics. To solve the classification task, we employ three intelligent approaches: Neural Networks (NN); Support Vector Machines (SVM); and Random Forests (RF). Subsequently, we critically analyse which imputation method influences most the classifiers’ performance, using a multiclass classification accuracy metric, based on the area under the ROC curves. We consider two superclasses (‘military’ and ‘civil’), each containing several ‘subclasses’, and introduce and propose two new metrics: inner class accuracy (IA); and outer class accuracy (OA), in addition to the overall classification accuracy (OCA) metric. We conclude that they can be used as complementary to the OCA when choosing the best classifier for the problem at hand.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modelling and Simulation,Information Systems

Reference34 articles.

1. [1] C. Enders, Applied missing data analysis. Guilford Press, New York, 2010.

2. [2] J. Osborne, Best Practices in Data Cleaning. SAGE, 2013.

3. [3] P. Schmitt, J. Mandel, M. Guedj, A Comparison of Six Methods for Missing Data Imputation. Journal of Biometrics & Biostatistics, 6(1), 2015, 1-6.

4. [4] G. Ridgeway, Generalized Boosted Models: A guide to the gbm package. Update 1.1, 2007. www.saedsayad.com/docs/gbm2.pdf. Accessed 20 October 2016.

5. [5] M. Richards, Fundamentals of radar signal processing. Tata McGraw-Hill Education, 2005.

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3