Optimal Fractional-Order Fuzzy-MPPT for solar water pumping system

Author:

Shalaby Raafat123,Ammar Hossam Hassan23,Azar Ahmad Taher45,Mahmoud Mohamed I.1

Affiliation:

1. Faculty of Electronic Engineering, Menofia University, Menouf, Egypt

2. School of Engineering and Applied Science, Nile University, Sheikh Zayed City, Giza, Egypt

3. Smart Engineering Systems Research Center (SESC), Nile University, Sheikh Zayed City, Giza, Egypt

4. Robotics and Internet-of-Things Lab (RIOTU), Prince Sultan University, Riyadh, Saudi Arabia

5. Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt

Abstract

This paper seeks to improve the efficiency of photovoltaic (PV) water pumping system using Fractional-order Fuzzy Maximum Power Point Tracking (FoF-MPPT) control and Gray Wolf Optimization (GWO) technique. The fractional calculus has been used to provide an enhanced model of PV water pumping system to, accurately, describe its nonlinear characteristics. Moreover, three metaheuristic optimizers are applied to tune the parameters of the proposed FoF-MPPT, Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and the GWO. The FoF-MPPT is intensively tested and compared to the Perturb and Observe (PO), the Incremental Conductance (INC) and the FL-MPPT controllers. A MATLAB-Simscape based physical model of the PV water pumping system has been developed and simulated for different control techniques with the proposed optimization algorithms. The response of the PV water pumping systems is evaluated under rapidly changing weather conditions to prove the effectiveness of the optimized FoF-MPPT compared to the conventional algorithms. The reliability of the comparative study has been emphasized in terms of several transient tracking and steady- state performance indices under different operating conditions. The simulation results show the effective performance of the proposed metaheuristic optimized FL-MPPT and FoF-MPPT control under different climatic conditions with disturbance rejection and robustness analysis.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3