Photovoltaic power forecasting using wavelet Neuro-Fuzzy for active solar trackers

Author:

Stefenon Stéfano Frizzo12,Kasburg Christopher1,Freire Roberto Zanetti3,Silva Ferreira Fernanda Cristina1,Bertol Douglas Wildgrube2,Nied Ademir2

Affiliation:

1. Electrical Engineering, Center of Exact and Technological Sciences (CCET), University of Planalto Catarinense (UNIPLAC), Lages SC, Brazil

2. Electrical Engineering Postgraduate Program (PPGEE), Department of Electrical Engineering, Santa Catarina State University (UDESC), Joinville SC, Brazil

3. Industrial and Systems Engineering Graduate Program (PPGEPS), Polytechnic School (EP), Pontifical Catholic University of Parana (PUCPR), Curitiba PR, Brazil

Abstract

The generation of electric energy by photovoltaic (PV) panels depends on many parameters, one of them is the sun’s angle of incidence. By using solar active trackers, it is possible to maximize generation capacity through real-time positioning. However, if the engines that update the position of the panels use more energy than the difference in efficiency, the solar tracker system becomes ineffective. In this way, a time series forecasting method can be assumed to determine the generation capacity in a pre-established horizon prediction to evaluate if a position update would provide efficient results. Among a wide range of algorithms that can be used in forecasting, this work considered a Neuro-Fuzzy Inference System due to its combined advantages such as smoothness property from Fuzzy systems and adaptability property from neural networks structures. Focusing on time series forecasting, this article presents a model and evaluates the solar prediction capacity using the Wavelet Neuro-Fuzzy algorithm, where Wavelets were included in the model for feature extraction. In this sense, this paper aims to evaluate whether it is possible to obtain reasonable accuracy using a hybrid model for electric power generation forecasting considering solar trackers. The main contributions of this work are related to the efficiency improvement of PV panels. By assuming a hybrid computational model, it is possible to make a forecast and determine if the use of solar tracking is interesting during certain periods. Finally, the proposed model showed promising results when compared to traditional Nonlinear autoregressive model structures.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3