Multi-feature fusion and dual-channel networks for sentiment analysis

Author:

Chen Xinying1,Hu Mingjie1

Affiliation:

1. School of Computer and Communication Engineering, Dalian Jiaotong University, Dalian, Liaoning, China

Abstract

With the rapid proliferation of substantial textual data from sources such as social media, online comments, and news articles, sentiment analysis has become increasingly crucial. However, existing deep learning methods have overlooked the significance of part-of-speech (POS) and emotional words in understanding the emotion of text. Based on this, this paper proposes a sentiment analysis approach that combines multiple features with a dual-channel network. Firstly, the vector representation of the text is obtained through Robustly Optimized BERT Pretraining Approach (RoBERTa). Secondly, the POS features and word emotional features are separately updated using self-attention to calculate weights. Concatenating words, POS and emotion, feature dimension reduction and fusion are achieved through a linear layer. Finally, the fused feature vector is input into a dual-channel network composed of Bidirectional Gated Recurrent Unit (BiGRU) and Deep Pyramid Convolutional Neural Network (DPCNN). Experimental results demonstrate that the proposed method achieves higher classification accuracy than the comparative methods on three sentiment analysis datasets. Moreover, the experimental results fully validate the effectiveness of the proposed approach.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3