Deep Learning in Sentiment Analysis: Recent Architectures

Author:

Abdullah Tariq1ORCID,Ahmet Ahmed1ORCID

Affiliation:

1. University of Derby, United Kingdom, Kedleston Rd, Derby, Derbyshire, United Kingdom

Abstract

Humans are increasingly integrated with devices that enable the collection of vast unstructured opinionated data. Accurately analysing subjective information from this data is the task of sentiment analysis (an actively researched area in NLP). Deep learning provides a diverse selection of architectures to model sentiment analysis tasks and has surpassed other machine learning methods as the foremast approach for performing sentiment analysis tasks. Recent developments in deep learning architectures represent a shift away from Recurrent and Convolutional neural networks and the increasing adoption of Transformer language models. Utilising pre-trained Transformer language models to transfer knowledge to downstream tasks has been a breakthrough in NLP. This survey applies a task-oriented taxonomy to recent trends in architectures with a focus on the theory, design and implementation. To the best of our knowledge, this is the only survey to cover state-of-the-art Transformer-based language models and their performance on the most widely used benchmark datasets. This survey paper provides a discussion of the open challenges in NLP and sentiment analysis. The survey covers five years from 1st July 2017 to 1st July 2022.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference184 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3