The Cahn–Hilliard equation as limit of a conserved phase-field system
Author:
Affiliation:
1. Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 546, Dhahran 31261, Saudi Arabia. E-mails: bonfoh@kfupm.edu.sa, cenyi@kfupm.edu.sa
Publisher
IOS Press
Subject
General Mathematics
Reference45 articles.
1. Exponential attractors of reaction-diffusion systems in an unbounded domain;Babin;J. Dyn. Differential Equations,1995
2. The singular limit dynamics of the phase-field equations;Bonfoh;Ann. Mat. Pura Appl.,2011
3. Dynamics of the conserved phase-field system;Bonfoh;Appl. Analysis,2016
4. Large time behavior of a conserved phase-field system;Bonfoh;Commun. Pure Appl. Anal.,2016
5. Singularly perturbed 1D Cahn–Hilliard equation revisited;Bonfoh;Nonlinear Differ. Equ. Appli.,2010
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stability of exponential attractors for singularly perturbed phase-field systems of Oono type;Evolution Equations and Control Theory;2024
2. Longer Gaps Between Values of Binary Quadratic Forms;International Mathematics Research Notices;2022-05-30
3. Existence and Continuity of Inertial Manifolds for the Hyperbolic Relaxation of the Viscous Cahn–Hilliard Equation;Applied Mathematics & Optimization;2021-02-24
4. Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term;Communications on Pure & Applied Analysis;2021
5. Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems;Evolution Equations & Control Theory;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3