Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term

Author:

Bonfoh Ahmed,Suleman Ibrahim A.

Abstract

<p style='text-indent:20px;'>We consider the conserved phase-field system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE111"> \begin{document}$\left\{ \begin{array}{l}\tau {\phi _t} + N(\delta {\phi _t} + N\phi + g(\phi ) - u) = 0,\\\epsilon{u_t} + {\phi _t} + Nu = 0,\end{array} \right.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{S}}_\varepsilon }} \right)$\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \tau&gt;0 $\end{document}</tex-math></inline-formula> is a relaxation time, <inline-formula><tex-math id="M2">\begin{document}$ \delta&gt;0 $\end{document}</tex-math></inline-formula> is the viscosity parameter, <inline-formula><tex-math id="M3">\begin{document}$ \epsilon\in (0,1] $\end{document}</tex-math></inline-formula> is the heat capacity, <inline-formula><tex-math id="M4">\begin{document}$ \phi $\end{document}</tex-math></inline-formula> is the order parameter, <inline-formula><tex-math id="M5">\begin{document}$ u $\end{document}</tex-math></inline-formula> is the absolute temperature, the Laplace operator <inline-formula><tex-math id="M6">\begin{document}$ N = -\Delta:{\mathscr D}(N)\to \dot L^2(\Omega) $\end{document}</tex-math></inline-formula> is subject to either Neumann boundary conditions (in which case <inline-formula><tex-math id="M7">\begin{document}$ \Omega\subset{\mathbb R}^d $\end{document}</tex-math></inline-formula> is a bounded domain with smooth boundary) or periodic boundary conditions (in which case <inline-formula><tex-math id="M8">\begin{document}$ \Omega = \Pi_{i = 1}^d(0,L_i), $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M9">\begin{document}$ L_i&gt;0 $\end{document}</tex-math></inline-formula>), <inline-formula><tex-math id="M10">\begin{document}$ d = 1,2 $\end{document}</tex-math></inline-formula> or 3, and <inline-formula><tex-math id="M11">\begin{document}$ G(\phi) = \int_0^\phi g(\sigma)d\sigma $\end{document}</tex-math></inline-formula> is a double-well potential. Let <inline-formula><tex-math id="M12">\begin{document}$ j = 1 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M13">\begin{document}$ d = 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$ j = 2 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M15">\begin{document}$ d = 2 $\end{document}</tex-math></inline-formula> or 3. We assume that <inline-formula><tex-math id="M16">\begin{document}$ g\in{\mathcal C}^{j+1}(\mathbb R) $\end{document}</tex-math></inline-formula> and satisfies the conditions <inline-formula><tex-math id="M17">\begin{document}$ g'(\phi)\geq -{\mathscr C}_1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M18">\begin{document}$ G(\phi)\ge -{\mathscr C}_2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M19">\begin{document}$ (\phi-m(\phi))g(\phi)-{\mathscr C}_3(m(\phi))G(s)\ge -{\mathscr C}_4(m(\phi)) $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M20">\begin{document}$ {\mathscr C}_5(\varrho)\le {\mathscr C}_l(m(\phi))\le {\mathscr C}_6(\varrho) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M21">\begin{document}$ l = 3,4 $\end{document}</tex-math></inline-formula>, whenever <inline-formula><tex-math id="M22">\begin{document}$ |m(\phi)|\le \varrho $\end{document}</tex-math></inline-formula>), where <inline-formula><tex-math id="M23">\begin{document}$ \varrho,{\mathscr C}_1, {\mathscr C}_2,{\mathscr C}_4\ge 0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M24">\begin{document}$ {\mathscr C}_3, {\mathscr C}_5,{\mathscr C}_6&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$ m(\phi) = \frac{1}{|\Omega|}\int_\Omega\phi(x)dx $\end{document}</tex-math></inline-formula>. For instance, <inline-formula><tex-math id="M26">\begin{document}$ g(\phi) = \sum_{k = 1}^{2p-1}a_k\phi^k, $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M27">\begin{document}$ p\in{\mathbb N}, $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M28">\begin{document}$ p\ge 2, $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M29">\begin{document}$ a_{2p-1}&gt;0, $\end{document}</tex-math></inline-formula> satisfies all the above-mentioned conditions. We then prove a well-posedness result, the existence of the global attractor and a family of exponential attractors in the phase space <inline-formula><tex-math id="M30">\begin{document}$ {\mathcal V}_j = {\mathscr D}(N^{j/2})\times{\mathscr D}(N^{j/2}) $\end{document}</tex-math></inline-formula> equipped with the norm <inline-formula><tex-math id="M31">\begin{document}$ \|(\psi,\varphi)\|_{{\mathcal V}_{j}} = (\|N^{j/2}\psi\|^2+m(\psi)^2+\|N^{j/2}\varphi\|^2+m(\varphi)^2)^{1/2} $\end{document}</tex-math></inline-formula>. Moreover, we demonstrate that the global attractor is upper semicontinuous at <inline-formula><tex-math id="M32">\begin{document}$ \epsilon = 0 $\end{document}</tex-math></inline-formula> in the metric induced by the norm <inline-formula><tex-math id="M33">\begin{document}$ \|.\|_{{\mathcal V}_{j+1}} $\end{document}</tex-math></inline-formula>. In addition, the exponential attractors are proven to be Hölder continuous at <inline-formula><tex-math id="M34">\begin{document}$ \epsilon = 0 $\end{document}</tex-math></inline-formula> in the metric induced by the norm <inline-formula><tex-math id="M35">\begin{document}$ \|.\|_{{\mathcal V}_{j}} $\end{document}</tex-math></inline-formula>. Our results improve a recent work by Bonfoh and Enyi [Comm. Pure Appl. Anal. 2016; 35:1077-1105] where the following additional growth condition <inline-formula><tex-math id="M36">\begin{document}$ |g''(\phi)|\leq {\mathscr C}_7\left(|\phi|^{p}+1\right), $\end{document}</tex-math></inline-formula> <inline-formula><tex-math id="M37">\begin{document}$ {\mathscr C}_7&gt;0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M38">\begin{document}$ p&gt;0 $\end{document}</tex-math></inline-formula> is arbitrary when <inline-formula><tex-math id="M39">\begin{document}$ d = 1, 2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M40">\begin{document}$ p\in [0,3] $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M41">\begin{document}$ d = 3 $\end{document}</tex-math></inline-formula>, was required, preventing <inline-formula><tex-math id="M42">\begin{document}$ g $\end{document}</tex-math></inline-formula> to be a polynomial of any arbitrary odd degree with a strictly positive leading coefficient in three space dimension.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3