Cooperative multi-task assignment modeling of UAV based on particle swarm optimization

Author:

Zhou Xiaoming,Yang Kun

Abstract

Unmanned Ariel Vehicles (UAVs) are interconnected to perform specific tasks through self-routing and air-borne communications. The problem of automated navigation and adaptive grouping of the vehicles results in improper task completion and backlogs. To address this issue, a Particle Swarm Optimization-dependent Multi-Task Assignment Model (PSO-MTAM) is introduced in this article. The swarms are initialized for the available linear groups towards the destination. This article addressed the subject of UAVs using a multi-task assignment paradigm to increase task completion rates and handling efficiency. The different swarm stages are verified for the task progression, resulting in completion at the final stage. In this completion process, the first local best solution is estimated using the completion and assignment rate of a single task. The second local best solution relies on reaching the final stage. The global solution is identified depending on the convergence of the above solutions in task progression and handling density. The swarm positions are immediately identified, and the synchronous best solutions generate the final global best. The backlog-generating solutions are revisited by reassigning or re-initializing the swarm objects. The proposed model’s performance is analyzed using task handling rate, completion ratio, processing time, and backlogs. Improving the handling rate is essential for this validation, necessitating solution and position updates from the intermediate UAVs. With varying task densities and varying degrees of convergence, the iterations continue until completion. There is an 11% increase in the task handling rate and a 12.02% increase in the completion ratio with the suggested model. It leads to a 10.84% decrease in processing time, a 9.91% decrease in backlogs, and a 12.7% decrease in convergence cost.

Publisher

IOS Press

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3