Solid methane moderators: Thermodynamics and chemistry

Author:

Kirichek O.1,Lawson C.R.1,Draper G.L.1,Jenkins D.M.1,Haynes D.J.1,Lilley S.1

Affiliation:

1. SIS Facility, STFC, Rutherford Appleton Laboratory, Harwell, Didcot, UK. E-mail: oleg.kirichek@stfc.ac.uk

Abstract

The unique properties of solid methane enable the conversion of hot, energetic neutrons into cold neutrons, with an efficiency approximately 3.5 times that of liquid hydrogen based moderators. However, practical applications of solid methane in neutron moderators turned out to be much more challenging than initially expected. Exposure of solid methane at low temperatures to neutron radiation leads to a build-up of radiolysis products in the solid methane matrix. Accumulation of defects beyond some critical number can result in a spontaneous self-accelerated recombination process, which in combination with the expansion of hydrogen built up in bulk solid methane during irradiation, was believed to be responsible for the moderator’s breakdown. Here we present results of our thermodynamic model, based on the theory of thermal explosion. Our model agrees well with the test data obtained using methane moderators developed at the IPNS neutron source, based at Argonne National Laboratory and the data acquired during commissioning of the ISIS Target Station 2 solid methane moderator. We also discuss the products of radiolysis reactions generated by exposure of the condensed methane to neutron radiation. The succession of radiolysis reactions may lead to the production of long chain hydrocarbons, which can contaminate the moderator system and significantly reduce efficiency of the heat-exchanger. The possible solutions for cleaning moderators using targeted solvents are considered. In the conclusion we give some practical recommendations, based on our simulation results and operational experience.

Publisher

IOS Press

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3