Matrix-Assisted Processes in CH4-Doped Ar Ices Irradiated with an Electron Beam

Author:

Bludov Mykhailo1,Khyzhniy Ivan1,Uyutnov Sergey1,Savchenko Elena1

Affiliation:

1. B. Verkin Institute for Low Temperature Physics & Engineering NASU, 61103 Kharkiv, Ukraine

Abstract

The relaxation processes induced by exposure of the Ar matrices doped with CH4 (0.1–10%) to an electron beam were studied with a focus on the dynamics of radiolysis products—H atoms, H2 molecules, CH radicals, and energy transfer processes. Three channels of energy transfer to dopant and radiolysis products were discussed, including free charge carriers, free excitons and photons from the “intrinsic source” provided by the emission of the self-trapped excitons. Radiolysis products along with the total yield of desorbing particles were monitored in a correlated manner. Analysis of methane transformation reactions induced by free excitons showed that the CH radical can be considered a marker of the CH3 species. The competition between exciton self-trapping and energy transfer to the dopant and radiolysis products has been demonstrated. A nonlinear concentration behavior of the H atoms in doped Ar matrices has been established. Real-time correlated monitoring of optical emissions (H atom and CH3 radicals), particle ejection, and temperature revealed a nonmonotonic behavior of optical yields with a strong luminescence flash after almost an hour of exposure, which correlated with the explosive pulse of particle ejection and temperature. The connection of this phenomenon with the processes of energy transfer and recombination reactions has been established. It is shown that the delayed explosive ejection of particles is driven by both the recombination of H atoms and CH3 radicals. This occurs after their accumulation to a critical concentration in matrices at a CH4 content C ≥ 1%.

Publisher

MDPI AG

Reference89 articles.

1. Observed Ices in the Solar System;Gudipati;The Science of Solar System Ices,2012

2. Observation of the Icy Universe;Boogert;Annu. Rev. Astron. Astrophys.,2015

3. Methane in the Solar System;Segura;Boletín Soc. Geológica Mex.,2015

4. Discovery of interstellar methane: Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds;Lacy;Astrophys. J.,1991

5. Schmitt, B., and de Bergh, C. (1998). Solar System Ices, Kluwer Academic.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3