A novel methodology of parametric identification for robots based on a CNN

Author:

Carreón-Díaz de León Carlos Leopoldo1,Vergara-Limon Sergio2,Vargas-Treviño María Aurora D.2,González-Calleros Juan Manuel1

Affiliation:

1. Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Puebla, México

2. Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla, México

Abstract

This paper presents a novel methodology to identify the dynamic parameters of a real robot with a convolutional neural network (CNN). Conventional identification methodologies use continuous motion signals. However, these signals are quantized in their amplitude and are discrete in time. Therefore, the time required to identify the parameters of a robot with a limited measurement system is related to an optimized motion trajectory performed by the robot. The proposed methodology consists of an algorithm that uses a trained CNN with the data created by the dynamical model of the case study robot. A processing technique is proposed to transform the position, velocity, acceleration, and torque robot signals into an image whose characteristics are extracted by the CNN to determine their dynamic parameters. The proposed algorithm does not require any optimal trajectory to find the dynamic parameters. A proposed time-spectral evaluation metric is used to validate the robot data and the identification data. The validation results show that the proposed methodology identifies the parameters of a Cartesian robot in less than 1 second, exceeding 90% of the proposed evaluation metric and 98% for the simulation results.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference32 articles.

1. Low-Speed Control of Heavy-LoadTransfer Robot with Long Telescopic Boom Based on Stribeck FrictionModel;You;Mathematical Problems in Engineering,2012

2. Multisensor Data-Fusion-Based Approachto Airspeed Measurement Fault Detection for Unmanned AerialVehicles;Guo;IEEE Transactions on Instrumentation and Measurement,2018

3. Parameter identification for industrial robotswith a fast and robust trajectory design approach;Jin;Robotics andComputer-Integrated Manufacturing,2015

4. Optimal exciting motion for fast robot identification;Katsumata;Application to Contact Painting tasks with estimated externalforces, Robotics and Autonomous Systems,2019

5. A dynamicparameter identification method of industrial robots consideringjoint elasticity;Ni;International Journal of Advanced RoboticSystems,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3