Automatic fall detection using Orbbec Astra 3D pro depth images

Author:

Biswas Amrita1,Dey Barnali2,Poudyel Bishal1,Sarkar Nandita1,Olariu Teodora3

Affiliation:

1. Department of Electronics and Communication Engineering, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim, India

2. Department of Information Technology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Sikkim, India

3. Vasile Goldis Western University of Arad, Arad, Romania

Abstract

Falls particularly among the older population has always been a matter of concern. With the steady rise of small families, the elderly is very often left alone at home. Dedicated nurses or caretakers are quite expensive. Thus, intelligent monitoring systems with automatic fall detection systems installed at home or nursing homes could be a game changer in such applications. In this paper, a simple yet effective fall detection system based on computer vision. Novelty of this paper is that it uses the Yolo v2 network on the depth videos for extracting the subject from cluttered background. The robust performance of the YOLOv2 network ensures accurate subject detection and removes the need for any complicated fall detection algorithm. Fall detection is carried out using subject’s height to width ratio and fall velocity. These parameters are simple and easy to calculate and yet provide effective results. The input data is captured using the Orbbec Astra 3D camera.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3