A Survey on Recent Advances in Wearable Fall Detection Systems

Author:

Ramachandran Anita1ORCID,Karuppiah Anupama2ORCID

Affiliation:

1. Department of Computer Science & Information Systems, BITS, Pilani, Bangalore, India

2. Deptartment of Electrical & Electronics Engineering, BITS, Pilani, KK Birla Goa Campus, Goa, India

Abstract

With advances in medicine and healthcare systems, the average life expectancy of human beings has increased to more than 80 yrs. As a result, the demographic old-age dependency ratio (people aged 65 or above relative to those aged 15–64) is expected to increase, by 2060, from ∼28% to ∼50% in the European Union and from ∼33% to ∼45% in Asia (Ageing Report European Economy, 2015). Therefore, the percentage of people who need additional care is also expected to increase. For instance, per studies conducted by the National Program for Health Care of the Elderly (NPHCE), elderly population in India will increase to 12% of the national population by 2025 with 8%–10% requiring utmost care. Geriatric healthcare has gained a lot of prominence in recent years, with specific focus on fall detection systems (FDSs) because of their impact on public lives. According to a World Health Organization report, the frequency of falls increases with increase in age and frailty. Older people living in nursing homes fall more often than those living in the community and 40% of them experience recurrent falls (World Health Organization, 2007). Machine learning (ML) has found its application in geriatric healthcare systems, especially in FDSs. In this paper, we examine the requirements of a typical FDS. Then we present a survey of the recent work in the area of fall detection systems, with focus on the application of machine learning. We also analyze the challenges in FDS systems based on the literature survey.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Heuristic Fall-Detection Algorithm Based on Double Thresholding, Fuzzy Logic, and Wearable Motion Sensor Data;IEEE Internet of Things Journal;2023-10-15

2. A Fall Detection System Based on FMCW Radar Range-Doppler Image and Bi-LSTM Deep Learning;IEEE Sensors Journal;2023-09-15

3. Fall Detection Methods for Elderly People- A Comprehensive Survey;2023 6th International Conference on Contemporary Computing and Informatics (IC3I);2023-09-14

4. Deep learning-based slip-trip falls and near-falls prediction model using a single inertial measurement unit sensor for construction workplace;2023 4th International Conference on Big Data Analytics and Practices (IBDAP);2023-08-25

5. An In-Depth Analysis of Automated Health Monitoring Systems for Elderly Care;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3