Can convolutional neural networks approximate the phylogenetic tree of human populations with face images?1

Author:

Aguilar-Canto Fernando1,Luján-García Juan Eduardo12,Espinosa-Juárez Alberto1,Calvo Hiram1

Affiliation:

1. Computational Cognitive Sciences Lab, Center for Computing Research, Instituto Politécnico Nacional, Mexico City, Mexico

2. Biomedical Informatics Group (GIB), Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, Madrid, Spain

Abstract

Inferring phylogenetic trees in human populations is a challenging task that has traditionally relied on genetic, linguistic, and geographic data. In this study, we explore the application of Deep Learning and facial embeddings for phylogenetic tree inference based solely on facial features. We use pre-trained ConvNets as image encoders to extract facial embeddings and apply hierarchical clustering algorithms to construct phylogenetic trees. Our methodology differs from previous approaches in that it does not rely on preconstructed phylogenetic trees, allowing for an independent assessment of the potential of facial embeddings to capture relationships between populations. We have evaluated our method with a dataset of 30 ethnic classes, obtained by web scraping and manual curation. Our results indicate that facial embeddings can capture phenotypic similarities between closely related populations; however, problems arise in cases of convergent evolution, leading to misclassifications of certain ethnic groups. We compare the performance of different models and algorithms, finding that using the model with ResNet50 backbone and the face recognition module yields the best overall results. Our results show the limitations of using only facial features to accurately infer a phylogenetic tree and highlight the need to integrate additional sources of information to improve the robustness of population classification.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3