Affiliation:
1. Department of Computer Science and Engineering, R. M. D Engineering College, Kavaraipettai, Tamilnadu, India
Abstract
Nowadays, people always use online promotions to know about best shops to buy the best products. This shopping experience and shopper’s opinion about the shop can be observed by the customer-experience shared on social media. A new customer when searching a shop needs information about manufacturing date (MRD) and manufacturing price (MRP), offers, quality, and suggestions which are only provided by the previous customer experience. Several approaches were used previously for predicting the product details, but no one approach provides accurate information. To overcome these issues, Reviewer Reliability and XGboost whale Optimized Sentiment Analysis for Online Product Recommendation is proposed in this manuscript.Initially, Amazon Product recommendation datathe data are preprocessed and given to XGboost Classifier that classifies the product recommendation result as, good, bad and average. Generally the XGboost Classifier does not reveal any adoption of optimization techniques for computing the optimal parameters for assuring accurate classification of product recommendation. Therefore in this work, proposed Whale optimization algorithm utilized to optimize the weight parameters of the XGboost. Then the proposed model is implemented in MATLAB. The proposed method attains 18.31%, 12.81%, 45.75%, 26.97% and 25.55% lower Mean Absolute error, 18.31%, 12.81%, 27.97%, 25.97%, and 25.55% higher Mean absolute percentage error and 15.31%, 10.33%, 25.86%, 22.86% and 15.22% lower Mean Square Error than the existing methods.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献