Incremental text categorization based on hybrid optimization-based deep belief neural network

Author:

Srilakshmi V.1,Anuradha K.2,Shoba Bindu C.1

Affiliation:

1. CSE, JNTUA, Anantapur, India

2. CSE, GRIET, Hyderabad, India

Abstract

One of the effective text categorization methods for learning the large-scale data and the accumulated data is incremental learning. The major challenge in the incremental learning is improving the accuracy as the text document consists of numerous terms. In this research, a incremental text categorization method is developed using the proposed Spider Grasshopper Crow Optimization Algorithm based Deep Belief Neural network (SGrC-based DBN) for providing optimal text categorization results. The proposed text categorization method has four processes, such as are pre-processing, feature extraction, feature selection, text categorization, and incremental learning. Initially, the database is pre-processed and fed into vector space model for the extraction of features. Once the features are extracted, the feature selection is carried out based on mutual information. Then, the text categorization is performed using the proposed SGrC-based DBN method, which is developed by the integration of the spider monkey optimization (SMO) with the Grasshopper Crow Optimization Algorithm (GCOA) algorithm. Finally, the incremental text categorization is performed based on the hybrid weight bounding model that includes the SGrC and Range degree and particularly, the optimal weights of the Range degree model is selected based on SGrC. The experimental result of the proposed text categorization method is performed by considering the data from the Reuter database and 20 Newsgroups database. The comparative analysis of the text categorization method is based on the performance metrics, such as precision, recall and accuracy. The proposed SGrC algorithm obtained a maximum accuracy of 0.9626, maximum precision of 0.9681 and maximum recall of 0.9600, respectively when compared with the existing incremental text categorization methods.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3