HFCVO-DMN: Henry Fuzzy Competitive Verse Optimizer-Integrated Deep Maxout Network for Incremental Text Classification

Author:

Singh Gunjan,Nagpal Arpita

Abstract

One of the effectual text classification approaches for learning extensive information is incremental learning. The big issue that occurs is enhancing the accuracy, as the text is comprised of a large number of terms. In order to address this issue, a new incremental text classification approach is designed using the proposed hybrid optimization algorithm named the Henry Fuzzy Competitive Multi-verse Optimizer (HFCVO)-based Deep Maxout Network (DMN). Here, the optimal features are selected using Invasive Weed Tunicate Swarm Optimization (IWTSO), which is devised by integrating Invasive Weed Optimization (IWO) and the Tunicate Swarm Algorithm (TSA), respectively. The incremental text classification is effectively performed using the DMN, where the classifier is trained utilizing the HFCVO. Nevertheless, the developed HFCVO is derived by incorporating the features of Henry Gas Solubility Optimization (HGSO) and the Competitive Multi-verse Optimizer (CMVO) with fuzzy theory. The proposed HFCVO-based DNM achieved a maximum TPR of 0.968, a maximum TNR of 0.941, a low FNR of 0.032, a high precision of 0.954, and a high accuracy of 0.955.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference39 articles.

1. Yan, Y., Tao, Y., Jin, S., Xu, J., and Lin, H. (2019, January 23–26). An Interactive Visual Analytics System for Incremental Classification Based on Semi-supervised Topic Modeling. Proceedings of the IEEE Pacific Visualization Symposium (PacificVis), Bangkok, Thailand.

2. Multi kernel and dynamic fractional lion optimization algorithm for data clustering;Chander;Alex. Eng. J.,2018

3. DIGWO: Hybridization of Dragonfly Algorithm with Improved Grey Wolf Optimization Algorithm for Data Clustering;Jadhav;Multimed. Res.,2019

4. Tan, A.H. (1999, January 26–28). Text mining: The state of the art and the challenges. Proceedings of the Pakdd 1999 Workshop on Knowledge Discovery from Advanced Databases, Beijing, China.

5. SR-K-Means clustering algorithm for semantic information retrieval;Yadav;Int. J. Invent. Comput. Sci. Eng.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3