Novel algorithm for multivariate time series crash risk prediction using CNN-ATT-LSTM model

Author:

Deva Hema D.1,Ashok Kumar K.1

Affiliation:

1. Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamilnadu, India

Abstract

Multivariate Time Series Crash Risk Prediction is essential in the development of Collision Avoidance Systems (CASs), which are vital components of the Intelligent Transportation System. The crash risk prediction performance is degraded with high computational cost and low accuracy. To address this issue, Attention based CNN-LSTM Hybrid model is proposed for Multivariate time series crash risk prediction through the augmentation of Convolutional Neural Network (CNN) with Attention based Long Short Term Memory (ATT-LSTM). Attention mechanism is incorporated with LSTM to learn long-term dependencies of ultra-long sequences. Modified Crash Risk Index (MCRI) is developed to label the crash and non-crash events considering Adaptive Perception Reaction Time (APRT) which enables the enhancement of the accuracy of the Multivariate time series crash risk prediction system. The problem is formulated as multivariate time series prediction and validity of proposed model is evaluated with Next Generation Simulation (NGSIM) dataset. The proposed model outperforms state-of-the-art models where MCRI and CNN-ATT-LSTM enhance accuracy of the crash risk prediction. 98.1% of accuracy has been achieved in the proposed model. The result demonstrates that the proposed model requires less computational cost, high accuracy and minimum preprocessing. The proposed model presents warning to the driver at the time of collision accurately and can be implemented in Collision Avoidance Systems.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new spatiotemporal convolutional neural network model for short-term crash prediction;Frontiers of Engineering Management;2024-08-27

2. Efficient Collision Risk Prediction Model for Autonomous Vehicle Using Novel Optimized LSTM Based Deep Learning Framework;International Journal of Intelligent Transportation Systems Research;2024-05-18

3. Maximizing Crop Yield: Crop Yield Prediction using Advanced ML Algorithms;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

4. Pedestrian trajectory prediction method based on automatic driving;Journal of Intelligent & Fuzzy Systems;2024-04-18

5. Accident Detection using Images and Videos with CNN, LSTM, and Interpreting the Results using LIME & GradCAM;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3