Pedestrian trajectory prediction method based on automatic driving

Author:

Huang Mengtao12,Wang Jiaxuan1

Affiliation:

1. College of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an, China

2. Xi’an Key Laboratory of Electrical Equipment Condition Monitoring and Power Supply Security, Xi’an, China

Abstract

Pedestrian trajectory prediction plays a crucial role in autonomous driving, as its accuracy directly affects the autonomous driving system’s comprehension of the environment and subsequent decision-making processes. Current trajectory prediction methods tend to oversimplify pedestrians to mere point coordinates, utilizing positional information to infer interactions among individuals while overlooking the temporal correlations between them, thereby excessively simplifying pedestrian characteristics. To address the aforementioned issues, this paper proposes a trajectory prediction model for autonomous driving applications, that takes into account both pedestrian motion characteristics and scene interaction. The model optimizes the LSTM unit structure twice, serving to learn correlations among long trajectories of pedestrians and to integrate multiple forms of information into the neighborhood interaction module. Furthermore, our model introduces dual attention mechanisms for individuals and scenes, focusing on the key motion points of individual pedestrians and their interactive behavior with others in busy scenarios. The efficacy of the model was validated on the MOT16 pedestrian dataset and the Daimler pedestrian path prediction dataset, outperforming mainstream methods with 8% and 10% reductions in Average Displacement Error and Final Displacement Error respectively.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3