An investigation of Grid-Integrated Photovoltaic system intended for hybrid Moth Flame Optimization using ANFIS techniques

Author:

Rajagopal Sureshkumar1,Umapathy Prabha2

Affiliation:

1. Department of EEE, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India

2. Department of Electrical & Electronics Engineering, Dr. N.G.P Institute of Technology, Coimbatore, Tamilnadu, India

Abstract

As the move towards Grid Integrated-Photovoltaic (GI-PV) system is proposed to improve the power quality development. A novel Adaptive Neuro-Fuzzy Inference System (ANFIS) based on improved Moth Flame Optimization (MFO) algorithm is described for grid integrated approach. The solar integration of Maximum Power Point (MPP) fed into modified Switched Boost Inverter (SBI) is presented, this GI-PV connected circuit has become prominent research in a recent scenario for energy demand. Proposed MFOA-ANFIS controller has generated the duty cycle pulses to each converter circuit. The benefit of grid-tied SBI is direct control outer-loop employed to obtain MFO-ANFIS techniques. To maintain a constant voltage DC-link is employed for inner-loop, this presence of constant DC-power to grid loads with support of MFO-ANFIS assists Proportional Integral Differential (PID) method. The results acquired by the simulation expressed that the proposed controller is addressed to maintain active and reactive power exchange, regulate DC bus-link voltages, grid voltage, and grid current. The effectiveness of the practical implication research is achieved by the output as represented as minimum grid harmonics, load current, and compensator current as verified in MATLAB/Simulink platform.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Low Power Optimization Technology of Power ASIC Based on a Neural Network Algorithm;2023 3rd International Conference on New Energy and Power Engineering (ICNEPE);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3