Abstract
Electric vehicles are receiving widespread attention around the world due to their improved performance and zero carbon emissions. The effectiveness of electric vehicles depends on proper interfacing between energy storage systems and power electronics converters. However, the power delivered by energy storage systems illustrates unstable, unregulated and substantial voltage drops. To overcome these limitations, electric vehicle converters, controllers and modulation schemes are necessary to achieve a secured and reliable power transfer from energy storage systems to the electric motor. Nonetheless, electric vehicle converters and controllers have shortcomings including a large number of components, high current stress, high switching loss, slow dynamic response and computational complexity. Therefore, this review presents a detailed investigation of different electric vehicle converters highlighting topology, features, components, operation, strengths and weaknesses. Moreover, this review explores the various types of electric vehicle converter controllers and modulation techniques concerning functional capabilities, operation, benefits and drawbacks. Besides, the significance of optimization algorithms in electric vehicle converters is illustrated along with their objective functions, executions and various factors. Furthermore, this review explores the key issues and challenges of electric vehicle converters, controllers and optimizations to identify future research gaps. Finally, important and specific suggestions are delivered toward the development of an efficient converter for future sustainable electric vehicle applications.
Funder
Universiti Kebangsaan Malaysia
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献