A preliminary evaluation study of applying a deep learning image reconstruction algorithm in low-kilovolt scanning of upper abdomen

Author:

Wang Ya-Ning1,Du Yu1,Shi Gao-Feng1,Wang Qi1,Li Ru-Xun1,Qi Xiao-Hui1,Cai Xiao-Jia1,Zhang Xuan2

Affiliation:

1. Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China

2. GE Company, Beijing, China

Abstract

OBJECTIVE: To investigate feasibility of applying deep learning image reconstruction (DLIR) algorithm in a low-kilovolt enhanced scan of the upper abdomen. METHODS: A total of 64 patients (BMI<28) are selected for the enhanced upper abdomen scan and divided evenly into two groups. The tube voltages in Group A are 100kV in arterial phase and 80kV in venous phase, while tube voltages are 120kV during two phases in Group B. Image reconstruction algorithms used in Group A include the filtered back projection (FBP) algorithm, the adaptive statistical iterative reconstruction-Veo (ASIR-V 40% and 80%) algorithm, and the DLIR algorithm (DL-L, DL-M, DL-H). Image reconstruction algorithm used in Group B is ASIR-V40%. The different reconstruction algorithm images are used to measure the common hepatic artery, liver, renal cortex, erector spinae, and subcutaneous adipose in the arterial phase and the average CT value and standard deviation of the portal vein, liver, spleen, erector spinae, and subcutaneous adipose in the portal phase. The signal-to-noise ratio (SNR) is calculated, and the images are also scored subjectively. RESULTS: In Group A, noise in the aorta, liver, portal vein (the portal phase), spleen (the portal phase), renal cortex, retroperitoneal adipose, and muscle is significantly lower in both the DL-H and ASIR-V80% images, and the SNR is significantly higher than those in the remaining groups (P<0.05). The SNR of each tissue and organ in Group B is not significantly different from that in DL-M, DL-L, and ASIR-V40% in Group A (P>0.05). The subjective image quality scores in the DL-H and B groups are higher than those in the other groups, and the FBP group has significantly lower image quality than the remaining groups (P<0.05). CONCLUSION: For upper abdominal low-kilovolt enhanced scan data, the DLIR-H gear yields a more satisfactory image quality than the FBP and ASIR-V.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference19 articles.

1. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT;Akagi;Eur Radiol,2019

2. Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233;Samei;Med Phys,2019

3. Iterative reconstruction for image enhancement and dose reduction in diagnostic cone beam CT imaging;Matenine;J Xray Sci Technol,2019

4. A feasibility study of realizing low-dose abdominal CT using deep learning image reconstruction algorithm;Li;J Xray Sci Technol,2021

5. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience;Jensen;Am J Roentgenol,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3