Preliminary Evaluation of Artificial Intelligence-Based Anti-Hepatocellular Carcinoma Molecular Target Study in Hepatocellular Carcinoma Diagnosis Research

Author:

Wang Yuan1,Wei Chao2,Deng Xiangui3,Gao Shudi4,Chen Jing1ORCID

Affiliation:

1. Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China

2. Qijiang Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing 401420, China

3. Wenlong Hospital of Qijiang, Chongqing 401420, China

4. Taiyuan Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi 030000, China

Abstract

In this paper, in-depth research analysis of anti-hepatocellular carcinoma molecular targets for hepatocellular carcinoma diagnosis was conducted using artificial intelligence. Because BRD4 plays an important role in gene transcription for cell cycle regulation and apoptosis, tumor-targeted therapy by inhibiting the expression or function of BRD4 has received increasing attention in the field of antitumor research. Study subjects in small samples were used as the validation set for validating each diagnostic model constructed based on the training set. The diagnostic effect of each model in the validation set is evaluated by calculating the sensitivity, specificity, and compliance rate, and the model with the best and most stable diagnostic value is selected by combining the results of model construction, validation, and evaluation. The total sample was divided into a training set and test set by using a stratified sampling method in the ratio of 7 : 3. Logistic regression, weighted k -nearest neighbor, decision tree, and BP artificial neural network were used in the training set to construct diagnostic models for early-stage liver cancer, respectively, and the optimal parameters of the corresponding models were obtained, and then, the constructed models were validated in the test set. To evaluate the diagnostic efficacy, stability, and generalization ability of the four classification methods more robustly, a 10-fold crossover test was performed for each classification method. BRD4 is an epigenetic regulator that is associated with the upregulation of expression of various oncogenic drivers in tumors. Targeting BRD4 with pharmacological inhibitors has emerged as a novel approach for tumor treatment. However, before we implemented this topic, there were no detailed studies on whether BRD4 could be used for the treatment of HCC, the role of BRD4 in HCC cell proliferation and apoptosis, and the ability of small molecule BRD4 inhibitors to induce apoptosis in hepatocellular carcinoma cells.

Funder

Hospital of Chengdu University of Traditional Chinese Medicine

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3