The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration’s benchmark nozzle model

Author:

Good Bryan C.1

Affiliation:

1. , University of Tennessee, , , USA

Abstract

BACKGROUND: Computational fluid dynamics (CFD) is an important tool for predicting cardiovascular device performance. The FDA developed a benchmark nozzle model in which experimental and CFD data were compared, however, the studies were limited by steady flows and Newtonian models. OBJECTIVE: Newtonian and non-Newtonian blood models will be compared under steady and pulsatile flows to evaluate their influence on hemodynamics in the FDA nozzle. METHODS: CFD simulations were validated against the FDA data for steady flow with a Newtonian model. Further simulations were performed using Newtonian and non-Newtonian models under both steady and pulsatile flows. RESULTS: CFD results were within the experimental standard deviations at nearly all locations and Reynolds numbers. The model differences were most evident at Re = 500, in the recirculation regions, and during diastole. The non-Newtonian model predicted blunter upstream velocity profiles, higher velocities in the throat, and differences in the recirculation flow patterns. The non-Newtonian model also predicted a greater pressure drop at Re = 500 with minimal differences observed at higher Reynolds numbers. CONCLUSIONS: An improved modeling framework and validation procedure were used to further investigate hemodynamics in geometries relevant to cardiovascular devices and found that accounting for blood’s non-Newtonian and pulsatile behavior can lead to large differences in predictions in hemodynamic parameters.

Publisher

IOS Press

Subject

Physiology (medical),Physiology

Reference33 articles.

1. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations;Hariharan;Journal of Biomechanical Engineering,2011

2. Preliminary results of FDA’s “Critical Path” project to validate computational fluid dynamic methods used in medical device evaluation;Stewart;ASAIO J,2009

3. Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study;Stewart;Cardiovascular Engineering and Technology,2012

4. Results of FDA’s first interlaboratory computational study of a nozzle with a sudden contraction and conical diffuser;Stewart;Cardiovascular Engineering and Technology,2013

5. FDA benchmark medical device flow models for CFD validation;Malinauskas;ASAIO Journal,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3