A novel vision transformer model for rumor prediction in COVID-19 data CT images

Author:

Mukiri Raja Kumari1,Burra Vijaya Babu1

Affiliation:

1. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India

Abstract

The convergence of healthcare and deep learning has engendered transformative solutions for myriad medical challenges. Amid the COVID-19 pandemic, innovative strategies are imperative to mitigate the propagation of misinformation and myths, which can exacerbate the crisis. This study embarks on a pioneering research quest, harnessing advanced deep learning methodologies, including the novel Vision Transformer (ViT) model and state-of-the-art (SOTA) models, to predict and quell the dissemination of rumors within the COVID-19 milieu. By synergizing the capabilities of Vision Transformers (ViTs) with cutting-edge SOTA models, the proposed approach strives to elevate the precision of information disseminated through traditional and digital media platforms, thereby cultivating informed decision-making and public awareness. Central to this inquiry is the development of a bespoke vision transformer architecture, adeptly tailored to scrutinize CT images associated with COVID-19 cases. This model adeptly captures intricate patterns, anomalies, and features within the images, facilitating precise virus detection. Extending beyond conventional methodologies, the model adroitly harnesses the scalability and hierarchical learning intrinsic to deep learning frameworks. It delves into spatial relationships and finer intricacies within CT scans. An extensive dataset of COVID-19-related CT images, encompassing diverse instances, stages, and severities, is meticulously curated to fully exploit the innovative potential of the vision transformer model. Thorough training, validation, and testing refine the model’s predictive prowess. Techniques like data augmentation and transfer learning bolster generalization and adaptability for real-world scenarios. The efficacy of this research is gauged through comprehensive assessments, encompassing sensitivity, specificity, and prediction accuracy. Comparative analyses against existing methods underscore the superior performance of the novel model, highlighting its transformative influence on predicting and mitigating rumor propagation during the COVID-19 pandemic. Enhanced interpretability sheds light on the decision-making process, augmenting the model’s utility within real-world decision support systems. By harnessing the transformative capabilities of vision transformers and synergizing them with advanced SOTA models, this study offers a robust solution to counter the dissemination of misinformation during the pandemic. The model’s proficiency in discerning intricate patterns in COVID-19-related CT scans signifies a pivotal leap toward combating the infodemic. This endeavor culminates in more precise public health communication and judicious decision-making, ushering in a new era of leveraging cutting-edge deep learning for societal well-being amidst the challenges posed by the COVID-19 era.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3