Denoising of magnetic resonance images using discriminative learning-based deep convolutional neural network

Author:

Tripathi Sumit,Sharma Neeraj

Abstract

BACKGROUND: The noise in magnetic resonance (MR) images causes severe issues for medical diagnosis purposes. OBJECTIVE: In this paper, we propose a discriminative learning based convolutional neural network denoiser to denoise the MR image data contaminated with noise. METHODS: The proposed method incorporates the use of depthwise separable convolution along with local response normalization with modified hyperparameters and internal skip connections to denoise the contaminated MR images. Moreover, the addition of parametric RELU instead of normal conventional RELU in our proposed architecture gives more stable and fine results. The denoised images were further segmented to test the appropriateness of the results. The network is trained on one dataset and tested on other dataset produces remarkably good results. RESULTS: Our proposed network was used to denoise the images of different noise levels, and it yields better performance as compared with various networks. The SSIM and PSNR showed an average improvement of (7.2 ± 0.002) % and (8.5 ± 0.25) % respectively when tested on different datasets without retaining the network. An improvement of 5% and 6% was achieved in the values of mean intersection over union (mIoU) and BF score when the denoised images were segmented for testing the relevancy in biomedical imaging applications. The statistical test suggests that the obtained results are statistically significant as p< 0.05. CONCLUSION: The denoised images obtained are more clinically suitable for medical image diagnosis purposes, as depicted by the evaluation parameters. Further, external clinical validation was performed by an experienced radiologist for testing the validation of the resulting images.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AUTOMATIC DETECTION OF COVID-19 AND VIRAL PNEUMONIA IN X-RAY IMAGES USING DEEP LEARNING APPROACH;Biomedical Engineering: Applications, Basis and Communications;2023-02-08

2. Automatic detection of Gibbs artefact in MR images with transfer learning approach;Technology and Health Care;2023-01-06

3. Detection of COVID-19 Infection in CT and X-ray images using transfer learning approach;Technology and Health Care;2022-11-12

4. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging—State-of-the-Art and Challenges;Journal of Digital Imaging;2022-11-02

5. Discriminative Learning Based Dual Channel Denoising Network For Removal of Noise from MR Images;2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22);2022-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3