Automatic detection of Gibbs artefact in MR images with transfer learning approach

Author:

Kocet Laura1,Romarič Katja2,Žibert Janez3

Affiliation:

1. Department of Radiology, University Medical Centre Maribor, Maribor, Slovenia

2. Center for Clinical Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

3. Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia

Abstract

BACKGROUND: Quality control of magnetic resonance imaging includes image validation, which covers also artefact detection. The daily manual review of magnetic resonance images for possible artefacts can be time-consuming, so automated methods for computer-assisted quality assessment of magnetic resonance imaging need to be developed. OBJECTIVE: The aim of this study was to develop automatic detection of Gibbs artefacts in magnetic resonance imaging using a deep learning method called transfer learning, and to demonstrate the potential of this approach for the development of an automatic quality control tool for the detection of such artefacts in magnetic resonance imaging. METHODS: The magnetic resonance image dataset of the scanned phantom for quality assurance was created using a turbo spin-echo pulse sequence in the transverse plane. Images were created to include Gibbs artefacts of varying intensities. The images were annotated by two independent reviewers. The annotated dataset was used to develop a method for Gibbs artefact detection using the transfer learning approach. The VGG-16, VGG-19, and ResNet-152 convolutional neural networks were used as pre-trained networks for transfer learning and compared using 5-fold cross-validation. RESULTS: All accuracies of the classification models were above 97%, while the AUC values were all above 0.99, confirming the high quality of the constructed models. CONCLUSION: We show that transfer learning can be successfully used to detect Gibbs artefacts on magnetic resonance images. The main advantages of transfer learning are that it can be applied on small training datasets, the procedures to build the models are not so complicated, and they do not require much computational power. This shows the potential of transfer learning for the more general task of detecting artefacts in magnetic resonance images of patients, which consequently can improve and speed up the process of quality assessment in medical imaging practice.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3