Affiliation:
1. Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore, India
2. Department of Information Technology, Coimbatore Institute of Technology, Coimbatore, India
Abstract
Network resources and traffic priorities can be utilized to distribute requested tasks across edge nodes at the edge layer. However, due to the variety of tasks, the edge nodes have an impact on data accessibility. Resource management approaches based on Virtual Machine (VM) migration, job prioritization, and other methods were used to overcome this problem. A Minimized Upgrading Batch VM Scheduling (MSBP) has recently been developed, which reduces the number of batches required to complete a system-scale upgrade and assigns bandwidth to VM migration matrices. However, due to poor resource sharing caused by suboptimal VM utilization, the MSBP was unable to effectively ensure the global best solutions. In order to distribute resources and schedule tasks optimally during VM migration, this paper proposes the MSBP with Multi-objective Optimization of Resource Allocation (MORA) method. The major goal of this proposed methodology is to take into account different objectives and solve the Pareto-front problem to enhance lifetime of the fog-edge network. First, it formulates an NP-hard challenge for MSBP by taking into account a variety of factors such as network sustainability, path contention, network delay, and cost-efficiency. The Multi-objective Krill Herd optimization (MoKH) algorithm is then used to address the NP-hard issue using the Pareto optimality rule and produce the best solution. First, it introduces an NP-hard challenge for MSBP by accounting in network sustainability, path contention, network latency, and cost-efficiency. The Pareto optimality rule is then implemented to overcome the NP-hard problem and provide the optimum solution employing the Multi-objective Krill Herd optimization (MoKH) algorithm. This increases network lifetime and improves resource allocation cost efficiency. Finally, the simulation results show that the MSBP-MORA distributes resources more efficiently and hence increases network lifetime when compared to other traditional algorithms.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference33 articles.
1. Edge computing technologies for internet of things: a primer;Ai;Digital Communications and Networks,2018
2. Edge-computing architectures for internet of things applications: a survey;Hamdan;Sensors,2020
3. A survey on internet of things architectures;Ray;Journal of King Saud University-Computer and Information Sciences,2018
4. Edge computing for IoT: challenges and solutions;Mostafavi;Journal of Communications Technology, Electronics and Computer Science,2019
5. Edge computing: current trends, research challenges and future directions;Carvalho;Computing,2021
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献