Affiliation:
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin, China
2. Forth Affiliated Hospital of Harbin Medical University, Harbin, China
Abstract
The investigation on brain magnetic resonance imaging (MRI) of cerebral small vessel disease (CSVD) classification algorithm based on deep learning is particularly important in medical image analyses and has not been reported. This paper proposes an MRI classification algorithm based on convolutional neural network (MRINet), for accurately classifying CSVD and improving the classification performance. The working method includes five main stages: fabricating dataset, designing network model, configuring the training options, training model and testing performance. The actual training and testing datasets of MRI of CSVD are fabricated, the MRINet model is designed for extracting more detailedly features, a smooth categorical-cross-entropy loss function and Adam optimization algorithm are adopted, and the appropriate training parameters are set. The network model is trained and tested in the fabricated datasets, and the classification performance of CSVD is fully investigated. Experimental results show that the loss and accuracy curves demonstrate the better classification performance in the training process. The confusion matrices confirm that the designed network model demonstrates the better classification results, especially for luminal infarction. The average classification accuracy of MRINet is up to 80.95% when classifying MRI of CSVD, which demonstrates the superior classification performance over others. This work provides a sound experimental foundation for further improving the classification accuracy and enhancing the actual application in medical image analyses.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning on medical image analysis;CAAI Transactions on Intelligence Technology;2024-06-24
2. Medical image identification methods: A review;Computers in Biology and Medicine;2024-02