Overview of Multi-Modal Brain Tumor MR Image Segmentation

Author:

Zhang Wenyin,Wu Yong,Yang Bo,Hu Shunbo,Wu LiangORCID,Dhelim Sahraoui

Abstract

The precise segmentation of brain tumor images is a vital step towards accurate diagnosis and effective treatment of brain tumors. Magnetic Resonance Imaging (MRI) can generate brain images without tissue damage or skull artifacts, providing important discriminant information for clinicians in the study of brain tumors and other brain diseases. In this paper, we survey the field of brain tumor MRI images segmentation. Firstly, we present the commonly used databases. Then, we summarize multi-modal brain tumor MRI image segmentation methods, which are divided into three categories: conventional segmentation methods, segmentation methods based on classical machine learning methods, and segmentation methods based on deep learning methods. The principles, structures, advantages and disadvantages of typical algorithms in each method are summarized. Finally, we analyze the challenges, and suggest a prospect for future development trends.

Funder

National Natural Science Foundation of China

Key R & D plan of Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference105 articles.

1. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective;Lin;IEEE Eng. Med. Biol. Mag.,2000

2. Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm1

3. A Brain Tumor Segmentation Method Based on Softmax Regression and Graph Cut;Ge;Chin. J. Electron.,2017

4. Current Methods in Medical Image Segmentation

5. A New Deformable Model Using Dynamic Gradient Vector Flow and Adaptive Balloon Forces;Luo,2003

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modality redundancy for MRI-based glioblastoma segmentation;International Journal of Computer Assisted Radiology and Surgery;2024-08-02

2. Enhancing brain tumor segmentation in MRI images using the IC-net algorithm framework;Scientific Reports;2024-07-08

3. A novel brain tumor segmentation and classification model using deep neural network over MRI-flair images;Multimedia Tools and Applications;2024-07-04

4. Survey on Segmentation of Brain Abnormalities in MRI Scan Images;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

5. An lightweight multimodal segmentation network for white matter tracts;2024 4th International Conference on Neural Networks, Information and Communication (NNICE);2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3