Enhancing brain tumor segmentation in MRI images using the IC-net algorithm framework

Author:

D S Chandra Sekaran,Christopher Clement J.

Abstract

AbstractBrain tumors, often referred to as intracranial tumors, are abnormal tissue masses that arise from rapidly multiplying cells. During medical imaging, it is essential to separate brain tumors from healthy tissue. The goal of this paper is to improve the accuracy of separating tumorous regions from healthy tissues in medical imaging, specifically for brain tumors in MRI images which is difficult in the field of medical image analysis. In our research work, we propose IC-Net (Inverted-C), a novel semantic segmentation architecture that combines elements from various models to provide effective and precise results. The architecture includes Multi-Attention (MA) blocks, Feature Concatenation Networks (FCN), Attention-blocks which performs crucial tasks in improving brain tumor segmentation. MA-block aggregates multi-attention features to adapt to different tumor sizes and shapes. Attention-block is focusing on key regions, resulting in more effective segmentation in complex images. FCN-block captures diverse features, making the model more robust to various characteristics of brain tumor images. Our proposed architecture is used to accelerate the training process and also to address the challenges posed by the diverse nature of brain tumor images, ultimately leads to potentially improved segmentation performance. IC-Net significantly outperforms the typical U-Net architecture and other contemporary effective segmentation techniques. On the BraTS 2020 dataset, our IC-Net design obtained notable outcomes in Accuracy, Loss, Specificity, Sensitivity as 99.65, 0.0159, 99.44, 99.86 and DSC (core, whole, and enhancing tumors as 0.998717, 0.888930, 0.866183) respectively.

Funder

Vellore Institute of Technology, Vellore

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3