Intelligent crack damage detection system in shield tunnel using combination of retinanet and optimal adaptive selection

Author:

Gao Xin Wen12,Li ShuaiQing1,Jin Bang Yang1,Hu Min23,Ding Wei4

Affiliation:

1. Institute of Mechanical and Electrical Engineering and Automation, Shanghai University, Shanghai, China

2. SHU-SUCG Research Centre of Building Information, Shanghai University, Shanghai, China

3. SILC Business School, Shanghai University, Shanghai, China

4. Shanghai Municipal Maintenance & Management Co., Ltd, Shanghai, China

Abstract

With the large-scale construction of urban subways, the detection of tunnel cracks becomes particularly important. Due to the complexity of the tunnel environment, it is difficult for traditional tunnel crack detection algorithms to detect and segment such cracks quickly and accurately. The article presents an optimal adaptive selection model (RetinaNet-AOS) based on deep learning RetinaNet for semantic segmentation on tunnel crack images quickly and accurately. The algorithm uses the ROI merge mask to obtain a minimum detection area of the crack in the field of view. A scorer is designed to measure the effect of ROI region segmentation to achieve optimal results, and further optimized with a multi-dimensional classifier. The algorithm is compared with the standard detection based on RetinaNet algorithm with an optimal adaptive selection based on RetinaNet algorithm for different crack types. The results show that our crack detection algorithm not only addresses interference due to mash cracks, slender cracks, and water stains but also the false detection rate decreases from 25.5–35.5% to about 3.6%. Meanwhile, the experimental results focus on the execution time to be calculated on the algorithm, FCN, PSPNet, UNet. The algorithm gives better performance in terms of time complexity.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3