Research on the Efficiency of Bridge Crack Detection by Coupling Deep Learning Frameworks with Convolutional Neural Networks

Author:

Ma Kaifeng1,Meng Xiang1,Hao Mengshu1,Huang Guiping1,Hu Qingfeng1,He Peipei1

Affiliation:

1. College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

Bridge crack detection based on deep learning is a research area of great interest and difficulty in the field of bridge health detection. This study aimed to investigate the effectiveness of coupling a deep learning framework (DLF) with a convolutional neural network (CNN) for bridge crack detection. A dataset consisting of 2068 bridge crack images was randomly split into training, verification, and testing sets with a ratio of 8:1:1, respectively. Several CNN models, including Faster R-CNN, Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO)-v5(x), U-Net, and Pyramid Scene Parsing Network (PSPNet), were used to conduct experiments using the PyTorch, TensorFlow2, and Keras frameworks. The experimental results show that the Harmonic Mean (F1) values of the detection results of the Faster R-CNN and SSD models under the Keras framework are relatively large (0.76 and 0.67, respectively, in the object detection model). The YOLO-v5(x) model of the TensorFlow2 framework achieved the highest F1 value of 0.67. In semantic segmentation models, the U-Net model achieved the highest detection result accuracy (AC) value of 98.37% under the PyTorch framework. The PSPNet model achieved the highest AC value of 97.86% under the TensorFlow2 framework. These experimental results provide optimal coupling efficiency parameters of a DLF and CNN for bridge crack detection. A more accurate and efficient DLF and CNN model for bridge crack detection has been obtained, which has significant practical application value.

Funder

National Natural Science Foundation of China

the Key Scientific Research Projects of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3