A novel object recognition method for photovoltaic (PV) panel occlusion based on deep learning

Author:

Yu Jing,Guan Rongqiang,Zhang Cungui,Shao Fang

Abstract

During the long-term operation of the photovoltaic (PV) system, occlusion will reduce the solar radiation energy received by the PV module, as well as the photoelectric conversion efficiency and economy. However, the occlusion detection of the PV power station has the defects of low efficiency, poor accuracy, and untimely detection, which will cause unknown system losses. Based on the deep learning algorithm, this paper conducts research on PV module occlusion detection. In order to accurately obtain the occlusion area and position information of the PV panel, a PV module occlusion detection model based on the Segment-You Only Look Once (Seg-YOLO) algorithm is established. Based on the YOLOv5 algorithm, the loss function is modified, the Segment Head detection module is introduced, and the convolutional block attention module (CBAM) attention mechanism is added to achieve the accurate detection of small targets by the algorithm model and the fast detection of the PV module occlusion area identify. The model performance research is carried out on three types of occlusion datasets: leaf, bird dropping, and shadow. According to the experimental results, the proposed model has better recognition accuracy and speed than SSD, Faster-Rcnn, YOLOv4, and U-Net. The precision rate, recall rate, and recognition speed can reach 90.52%, 92.41%, and 92.3 FPS, respectively. This model can lay a theoretical foundation for the intelligent operation and maintenance of PV systems.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3