Abstract
Infrared Thermography has been used as a tool for predictive and preventive maintenance of Photovoltaic panels. International Electrotechnical Commission provides some guidelines for using thermography to detect defects in Photovoltaic panels. However, the proposed guidelines focus only on the location of the hot spot than diagnosing the types of faults. The long-term reliability and efficiency of panels can be affected by progressive defects such as discolouring and delamination. This paper proposed the new Thermal Pixel Counting algorithm to detect the above faults based on three thermal profile index values. The real-time experimental testing was carried out using FLIR T420bx® thermal imager and results have been provided to validate the proposed method. In this work, the fuzzy rule-based classification system is proposed to automate the classification process. Fuzzy reasoning method based on a single winner rule fuzzy classifier is designed with modified rule weights by particular grade. The performance of the proposed classifier is compared with the conventional fuzzy classifier and neural network model.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献