A compact diamond shaped ultra-wide band antenna system for diagnosing breast cancer

Author:

Sadasivam S.,V Thulasi Bai

Abstract

BACKGROUND: Antennas for the microwave imaging system are large which results in higher radiation, manufacturing cost, poor radiation characteristics and it will be difficult to locate on breast tissues. OBJECTIVE: We propose a wearable ultra-wide band antenna for use in the diagnosis of breast cancer bio-medical applications. METHODS: The antenna has been fabricated on 1.6 mm FR4 substrate with a dimension of 28 × 14.4 mm2 and can operate between 2 GHz–12 GHz with S11<-10 dB with best radiation characteristics. The prototype of the proposed antenna was fabricated and practically tested and the results were found to be consistent with the simulated results. The proposed UWB antenna is intended to radiate and receive information covering the entire spectrum from 3 GHz to 13 GHz. For good impendence matching throughout the larger spectrum, the defected ground structure (diamond shape) was exploited. All the dimensions of the proposed design are confirmed by parametric study and optimization. RESULTS: The maximum simulated efficiency was ranging from 80 to 84% in the desired operating frequency. The maximum Specific Absorption Rate of the proposed antenna was 0.98 W/Kg. Therefore, the proposed UWB antenna could be the right structure for breast cancer diagnosis in terms of SAR. The antenna was found to have a substantial radiation efficiency of around 78%–84% in the desired operating bandwidth. The overall realized gain of the proposed UWB antenna was seen ranging from 1.8–4.2 dB which is sufficient for bio-medical applications. CONCLUSION: The breast phantom was modeled for the validation of the performance of the antenna and SAR was analyzed. The value of SAR of the designed antenna was observed at about 0.98 W/Kg, which is suitable for medical applications.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3