A very low-profile CPW based conformal antenna for wearable/implantable applications

Author:

Thyla B.,Bai V. Thulasi

Abstract

BACKGROUND: In wireless communication standard 4G and 5G, the body centric network plays an important role for the wireless communication between various devices. OBJECTIVE: This research relates to a wide-band conformal co-planar waveguide (CPW) antenna for wearable applications. METHODS: The proposed CPW antenna is printed on 0.1 mm thick bio-compatible polymide substrate whose dielectric constant and permittivity are 3.5 and 0.02 respectively. The total area of the antenna is around 17.5 × 15 mm2 which is significantly smaller than the wearable antennas proposed in literature. The proposed antenna is designed to operate in new ISM band 5.8 GHz with the bandwidth of 5.3–6.3 GHz with 2:1 Voltage Standing Wave Ratio (VSWR). The antenna is printed on the flexible substrate and hence robustness of device is evaluated by bending analysis. It reveals the superior performance of the designed CPW antenna over the desired spectrum of operation. RESULTS: Specific Absorption Rate (SAR) is calculated after placing the antenna at various places of human phantom model and showed that SAR values are below 1.6 W/Kg which is the maximum margin recommended by Federal Communication Commission (FCC), i.e when tested with 1 g and 10 g of human tissue of phantom model, for the test frequency range of 5.5–6.1 GHz, SAR value falls between 0.9987 and 0.921 W/Kg respectively. The antenna also shows the radiation efficiency around 92% with overall realized gain 5.2 dBi which are substantial values for wearable applications. CONCLUSION: The outcomes of this research revealed the feasibility of the recommended antenna becoming a major contender of future Internet of Things (IoT) applications.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3