High Salt Elicits Brain Inflammation and Cognitive Dysfunction, Accompanied by Alternations in the Gut Microbiota and Decreased SCFA Production

Author:

Hu Li12,Zhu Shaoping3,Peng Xiaoping4,Li Kanglan2,Peng Wanjuan2,Zhong Yu5,Kang Chenyao2,Cao Xingxing2,Liu Zhou42,Zhao Bin42

Affiliation:

1. Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China

2. Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

3. Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China

4. Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

5. Analysis Center of Guangdong Medical University, Zhanjiang, China

Abstract

Background: Excessive salt intake is considered as an important risk factor for cognitive impairment, which might be the consequence of imbalanced intestinal homeostasis. Objective: To investigate the effects of dietary salt on the gut microbiota and cognitive performance and the underlying mechanisms. Methods: Adult female C57BL/6 mice were maintained on either normal chow (control group, CON) or sodium-rich chow containing 8% NaCl (high-salt diet, HSD) for 8 weeks. Spatial learning and memory ability, short-chain fatty acids (SCFAs) concentrations, gut bacterial flora composition, blood-brain barrier permeability, and proinflammatory cytokine levels and apoptosis in the brain were evaluated. Results: The mice fed a HSD for 8 weeks displayed impaired learning and memory abilities. HSD significantly reduced the proportions of Bacteroidetes (S24-7 and Alloprevotella) and Proteobacteria and increased that of Firmicutes (Lachnospiraceae and Ruminococcaceae). SCFA concentrations decreased in the absolute concentrations of acetate, propionate, and butyrate in the fecal samples from the HSD-fed mice. The HSD induced both BBB dysfunction and microglial activation in the mouse brain, and increased the IL-1β, IL-6, and TNF-α expression levels in the cortex. More importantly, the degree of apoptosis was higher in the cortex and hippocampus region of mice fed the HSD, and this effect was accompanied by significantly higher expression of cleaved caspase-3, caspase-3, and caspase-1. Conclusion: The HSD directly causes cognitive dysfunction in mice by eliciting an inflammatory environment and triggering apoptosis in the brain, and these effects are accompanied by gut dysbiosis, particularly reduced SCFA production.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3