An energy-efficient quorum-based locking protocol by omitting meaningless methods on object replicas

Author:

Enokido Tomoya1,Duolikun Dilawaer2,Takizawa Makoto3

Affiliation:

1. Faculty of Business Administration, Rissho University, 4-2-16, Osaki, Shinagawa-ku, Tokyo, 141-8602, Japan

2. Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

3. Research Center for Computing and Multimedia Studies, Hosei University, 3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

Abstract

In current information systems, a huge number of IoT (Internet of Things) devices are interconnected with various kinds of networks like WiFi and 5G networks. A large volume of data is gathered into servers from a huge number of IoT devices and is manipulated to provide application services. Gathered data is encapsulated along with methods to manipulate the data as an object like a database system. In object-based systems, each application is composed of multiple objects. In addition, each object is replicated on multiple physical servers in order to increase availability, reliability, and performance of an application service. On the other hand, replicas of each object is required to be mutually consistent in presence of multiple transactions. Here, a larger amount of electric energy and computation resources are consumed in physical servers than non-replication approaches to serialize conflicting transactions on multiple replicas. Many algorithms to synchronize conflicting transactions are so far proposed like 2PL (Two-Phase Locking) and TO (Timestamp Ordering). However, the electric energy consumption is not considered. In this paper, an EEQBL-OMM (Energy-Efficient Quorum-Based Locking with Omitting Meaningless Method) protocol is newly proposed to reduce not only the average execution time of each transaction but also the total electric energy consumption of servers by omitting the execution of meaningless methods on replicas of each object. Evaluation results show the total electric energy consumption of servers, the average execution time of each transaction, and the number of aborted instances of transactions in the EEQBL-OMM protocol can be on average reduced to 79%, 62%, and 80% of the ECLBQS (Energy Consumption Laxity-Based Quorum Selection) protocol which is proposed in our previous studies in a homogeneous set of servers, respectively. In addition, the evaluation results show the total electric energy consumption of servers, the average execution time of each transaction, and the number of aborted instances of transactions in the EEQBL-OMM protocol can be on average reduced to 73%, 50%, and 67% of the ECLBQS protocol in a heterogeneous set of servers, respectively. The evaluation results also show at most 48% and 51% of the total number of methods can be omitted as meaningless methods in a homogeneous set and heterogeneous set of servers, respectively, in the EEQBL-OMM protocol.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Purpose-Based Concurrency Control to Reduce the Electric Energy Consumption of a Server Cluster;Lecture Notes on Data Engineering and Communications Technologies;2024

2. Energy-Efficient Concurrency Control with Role and Purpose Concepts;Lecture Notes on Data Engineering and Communications Technologies;2024

3. Role and Purpose-Based Concurrency Control with Reducing Electric Energy Consumption;Lecture Notes on Data Engineering and Communications Technologies;2024

4. Energy-Efficient Role-Based Concurrency Control with Virtual Machines;Advances on P2P, Parallel, Grid, Cloud and Internet Computing;2023-10-29

5. Energy-Efficient Locking Protocol in Virtual Machine Environments;Advances in Internet, Data & Web Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3