Comparative analysis of features and classification techniques in breast cancer detection for Biglycan biomarker images

Author:

Ma’touq Jumana1,Alnuman Nasim12

Affiliation:

1. Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan

2. Physiotherapy Department, Faculty of Allied Medical Sciences, Isra University, Amman, Jordan

Abstract

BACKGROUND: Breast cancer (BC) is considered the world’s most prevalent cancer. Early diagnosis of BC enables patients to receive better care and treatment, hence lowering patient mortality rates. Breast lesion identification and classification are challenging even for experienced radiologists due to the complexity of breast tissue and variations in lesion presentations. OBJECTIVE: This work aims to investigate appropriate features and classification techniques for accurate breast cancer detection in 336 Biglycan biomarker images. METHODS: The Biglycan biomarker images were retrieved from the Mendeley Data website (Repository name: Biglycan breast cancer dataset). Five features were extracted and compared based on shape characteristics (i.e., Harris Points and Minimum Eigenvalue (MinEigen) Points), frequency domain characteristics (i.e., The Two-dimensional Fourier Transform and the Wavelet Transform), and statistical characteristics (i.e., histogram). Six different commonly used classification algorithms were used; i.e., K-nearest neighbours (k-NN), Naïve Bayes (NB), Pseudo-Linear Discriminate Analysis (pl-DA), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). RESULTS: The histogram of greyscale images showed the best performance for the k-NN (97.6%), SVM (95.8%), and RF (95.3%) classifiers. Additionally, among the five features, the greyscale histogram feature achieved the best accuracy in all classifiers with a maximum accuracy of 97.6%, while the wavelet feature provided a promising accuracy in most classifiers (up to 94.6%). CONCLUSION: Machine learning demonstrates high accuracy in estimating cancer and such technology can assist doctors in the analysis of routine medical images and biopsy samples to improve early diagnosis and risk stratification.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3