Determining the importance of sentence position for automatic text summarization

Author:

Mendoza Griselda Areli Matias1,Ledeneva Yulia1,García-Hernández Rene Arnulfo1

Affiliation:

1. Universidad Autónoma del Estado de México, Unidad Académica Profesional Tianguistenco, Instituto Literario, Toluca, Edo. Mex, México

Abstract

The methods of Automatic Extractive Summarization (AES) uses the features of the sentences of the original text to extract the most important information that will be considered in summary. It is known that the first sentences of the text are more relevant than the rest of the text (this heuristic is called baseline), so the position of the sentence (in reverse order) is used to determine its relevance, which means that the last sentences have practically no possibility of being selected. In this paper, we present a way to soften the importance of sentences according to the position. The comprehensive tests were done on one of the best AES methods using the bag of words and n-grams models with the with DUC02 and DUC01 data sets to determine the importance of sentences.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference39 articles.

1. Comparison of multiepisode video summarization algorithms;Yahiaoui;EURASIP Journal on Advances in Signal Processing,2003

2. Single extractive text summarization based on a genetic algorithm;García-Hernández;Springer

3. Extractive summarization using supervised and unsupervised learning;Mao;Expert Systems with Applications,2019

4. Generating extractive summaries of scientific paradigms;Qazvinian;Journal of Artificial Intelligence Research,2013

5. Summarizing sporting events using twitter;Nichols;Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces, ACM

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long Text Summarization and Key Information Extraction in a Multi-Task Learning Framework;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Generic and Update Multi-Document Text Summarization based on Genetic Algorithm;Computación y Sistemas;2023-03-30

3. Extractive Summarization Approaches for Biomedical Literature: A Comparative Analysis;Proceedings of International Conference on Computational Intelligence and Data Engineering;2023

4. Automatic Text Summarization for Public Health WeChat Official Accounts Platform Base on Improved TextRank;Journal of Environmental and Public Health;2022-07-13

5. Query-focused multi-document text summarization using fuzzy inference;Journal of Intelligent & Fuzzy Systems;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3