Affiliation:
1. School of Electronic and Information Engineering, Changchun University, Changchun 130022, China
2. School of Media, Qufu Normal University, Rizhao 276826, China
Abstract
With the rapid development of we-media information dissemination, WeChat official accounts platform has become an important way for people to obtain health related knowledge. However, the platform information is redundant, miscellaneous, and overloaded. In order to meet the increasingly accurate and efficient knowledge service needs of users, reorganizing and aggregating document knowledge resources is effective. If we use the way of artificial recognition to filter information, it will inevitably cause huge labor and time cost, and the effect is very little in front of massive articles. This paper proposes a text summarization method for the WeChat platform based on improved TextRank that takes into account both user demands and sentence features during the summarization process. The data source crawled from the Sogou WeChat platform. The results show that the TextRank algorithm has obvious hints on the accuracy of text summarization extraction after fusing the Word2vec model. The improved TextRank method, integrating user demands and sentence features into the model, makes the results of text summarization closer to the theme of the article and more able to meet the user demand. According to the complexity of the algorithm, this method is not suitable for the automatic summarization of long or multiple documents.
Funder
Education Department of Jilin Province
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献