Design of laser image recognition system based on high performance computing of spatiotemporal data

Author:

Wu Zongfu1,Hou Fazhong2

Affiliation:

1. Hunan University of Arts and Science, Changde, Hunan, China

2. Hunan University of Medicine, Huaihua, Hunan, China

Abstract

Due to the large scale and spatiotemporal dispersion of 3D (three-dimensional) point cloud data, current object recognition and semantic annotation methods still face issues of high computational complexity and slow data processing speed, resulting in data processing requiring much longer time than collection. This article studied the FPFH (Fast Point Feature Histograms) description method for local spatial features of point cloud data, achieving efficient extraction of local spatial features of point cloud data; This article investigated the robustness of point cloud data under different sample densities and noise environments. This article utilized the time delay of laser emission and reception signals to achieve distance measurement. Based on this, the measured object is continuously scanned to obtain the distance between the measured object and the measurement point. This article referred to the existing three-dimensional coordinate conversion method to obtain a two-dimensional lattice after three-dimensional position conversion. Based on the basic requirements of point cloud data processing, this article adopted a modular approach, with core functional modules such as input and output of point cloud data, visualization of point clouds, filtering of point clouds, extraction of key points of point clouds, feature extraction of point clouds, registration of point clouds, and data acquisition of point clouds. This can achieve efficient and convenient human-computer interaction for point clouds. This article used a laser image recognition system to screen potential objects, with a success rate of 85% and an accuracy rate of 82%. The laser image recognition system based on spatiotemporal data used in this article has high accuracy.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3