Femtosecond laser auto-positioning direct writing of a multicore fiber Bragg grating array for shape sensing

Author:

Xiao Xunzhou1,Xu Baijie1,Xu Xizhen1,Du Bin1,Chen Ziyong1,Fu Cailing1ORCID,Liao Changrui1ORCID,He Jun1ORCID,Wang Yiping1

Affiliation:

1. Shenzhen University

Abstract

A multicore fiber Bragg grating (MC-FBG) array shape sensor is a powerful tool for a variety of applications. However, the efficient fabrication of high-quality MC-FBG arrays remains a problem. Here, we report for the first time, to the best of our knowledge, a new method of directly writing FBG arrays in a seven-core fiber (SCF) through the protective coating using femtosecond laser auto-positioning point-by-point technology, which is accomplished by image recognition and micro-displacement compensation. An MC-FBG array consisting of 140 individual FBGs with a grating length of 2 mm was successfully inscribed into seven cores of a 440 mm-long SCF. Each core contained 20 wavelength-division-multiplexed (WDM) FBGs with wavelengths ranging from 1522.11 nm to 1579.28 nm. In other words, the MC-FBG array consisted of 20 WDM nodes with an interval of 2 cm along the fiber, and each node contained seven identical FBGs integrated in parallel into the fiber cross-section. Moreover, the fabricated MC-FBG array exhibited a strong orientation dependence in bend sensing, with a maximum sensitivity of 55.49 pm/m−1. Subsequently, 2D and 3D shape sensing were demonstrated using the fabricated MC-FBG array, with maximum reconstruction errors per unit length of 4.51% and 10.81%, respectively. Hence, the MC-FBG arrays fabricated using the proposed method are useful in many applications, such as posture monitoring, smart robotics, and minimally invasive surgery.

Funder

National Natural Science Foundation of China

Guangdong Science and Technology Department

Shenzhen Science and Technology Innovation Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3